ESPECIALIDAD SISTEMAS


Composición química de los suelos de nuestro colegio 
FRANCISCO DE PAULA SANTANDER (DUITAMA)







imágenes de nuestro huerto 

aquí les mostraremos algunas imágenes de nuestro huerto : 











COMPOSICIÓN QUÍMICA DE LOS SUELOS

Los ambientes de suelos varían según la ubicación en términos de contenido, estructura y composición química. La composición química de los suelos afecta a cómo los nutrientes circulan a través de entornos de suelo, lo que determina la forzabilidad general para el crecimiento de la planta. La composición química depende de acidez, estructura del suelo y las actividades químicas que tienen lugar entre los suelos y formas de vida de la planta.


La composición química de un suelo determina qué tan fértil es el ambiente.

La composición química del suelo incluye la media de la reacción de un suelo (pH) y de sus elementos químicos (nutrientes). Su análisis es necesario para una mejor gestión de la fertilización, cultivo y para elegir las plantas más adecuadas para obtener los mejores rendimientos de cosecha.

La reacción del suelo o pH

La reacción de un suelo hace referencia al grado de acidez o basicidad del mismo y generalmente se expresa por medio de un valor de pH del sistema suelo-agua. El pH es la medida de la concentración de iones de hidrógeno [H+]. Según este valor, un suelo puede ser ácido, neutro o alcalino. Las propiedades físicas, químicas y biológicas del suelo están influenciadas por la acidez o basicidad del medio, que a su vez condicionan el uso agronómico del suelo. Así, la mayoría de las plantas prefieren rangos de pH de 5,5 a 7,5, pero algunas especies prefieren suelos ácidos o alcalinos. Sin embargo, cada planta necesita un rango específico de pH, en el que poder expresar mejor su potencialidad de crecimiento.
Del pH también dependen los procesos de humificación. En función del pH se producen distintos tipos de materia orgánica del suelo y propiedades que influyen directamente sobre el crecimiento vegetal como el movimiento y disponibilidad de los nutrientes.
El pH influye sobre la movilidad de los diferentes elementos del suelo: en unos casos disminuirá la solubilidad, con lo que las plantas no podrán absorberlos; en otros el aumento de la solubilidad debida al pH, hará que para determinados elementos sea máxima (por ejemplo, cuando hay mucha acidez se solubiliza enormemente el aluminio pudiendo alcanzarse niveles tóxicos). Cada planta necesita elementos en diferentes cantidades y esta es la razón por la que cada planta requiere un rango particular de pH para optimizar su crecimiento. Por ejemplo, el hierro, el cobre y el manganeso no son solubles en un medio alcalino. Esto significa que las plantas que necesiten estos elementos deberían teóricamente estar en un tipo de suelo ácido. El nitrógeno, el fósforo, el potasio y el azufre, por otro lado, están disponibles en un rango de pH cercano a la neutralidad.


La génesis del suelo se ve influenciada por la acidez o alcalinidad de su solución. Al aumentar la acidez del suelo, la flora bacteriana se ve desplazada por el predominio de hongos, con lo que la nitrificación y otros procesos dependientes de la actividad bacteriana se verán afectados. Por tanto, en condiciones de fuerte acidez, la fijación del nitrógeno y la mineralización de residuos vegetales se reducen. Las plantas absorben los nutrientes disueltos en el agua del suelo y la solubilidad de los nutrientes depende en gran medida del valor de pH.

Gestión del suelo en relación con los valores de pH.

Como hemos visto, la elección del cultivo depende del valor del pH del suelo, por ello se recomienda elegir cultivos que estén indicados para el rango analizado.

  • Gestión de suelos ácidos.



Hay varios factores que influyen sobre la acidez de los suelos. El calcio, el magnesio y el potasio, se eliminan del suelo a través de la erosión, la lixiviación y la recolección del cultivo, incrementándose la acidez de los suelos. Además, la utilización de fertilizantes acidificantes incrementa los niveles de acidez de los suelos. Por ejemplo, la conversión de los fertilizantes amónicos a nitratos ocasiona la formación de suelos ácidos.
Por ello, es importante emplear fertilizantes que no aumenten la acidez (urea, nitrato de calcio, nitrato de amonio y superfosfato) o reduzca la alcalinidad (sulfato de amonio). Sin embargo, el pH del suelo puede ajustarse mediante la aplicación de enmiendas. En suelos ácidos se pueden emplear sustancias correctoras como cal, dolomítica, piedra caliza y marga, según la naturaleza del suelo, que tienen la capacidad de neutralizar los ácidos del suelo.
El material calizo más común y económico que se encuentra disponible es la roca caliza agrícola. Las rocas calizas que contienen tanto calcio como magnesio de denominan rocas dolomíticas y las rocas que contienen únicamente calcio se denominan calcíticas. Cuando los suelos son ácidos y los niveles de magnesio son bajos, conviene incorporar roca caliza dolomítica, para así, incrementar tanto el pH como los niveles de magnesio.
Por tanto, la cal incorporada al suelo tiene cinco funciones:
1) Neutraliza el suelo. La mayoría de las plantas no se desarrollan correctamente en suelos ácidos.
2) Intensifica la disponibilidad de los nutrientes para las plantas.
3) Incrementa la efectividad del nitrógeno, del fósforo y del potasio incorporado.
4) Incrementa la actividad de los microorganismos, incluyendo los responsables de la fijación del N en las leguminosas y de la descomposición de la materia orgánica.
5) Intensifica el crecimiento de la planta y por tanto el rendimiento productivo del cultivo.

  • Gestión de suelos básicos.



Los niveles altos de pH en los suelos pueden depender de diferentes elementos, por lo que hay diversos métodos para su corrección.

En suelos ricos en piedra caliza se recomienda añadir sustancias orgánicas y en los suelos alcalino-salinos la alcalinidad se debe a la presencia de sales, en particular a una alta concentración de sodio.

Si la alcalinidad está causada por sodio, se recomienda añadir sustancias como el yeso (sulfato de calcio), sulfuro u otros sulfúricos.

Composición del suelo







ETAPAS DE LA FORMACIÓN DE LOS SUELOS 












En si el Suelo está compuesto por hidrógeno, nitrógeno, dióxido de carbono, carbono, azufre, fósforo, agua, oxigeno y en si los nutrientes que se recopilan por la descomposición. Estos son los principales componentes químicos. 

  • En las ciencias de la Tierra y de la vida, se denomina suelo al sistema estructurado, biológica mente activo, que tiende a desarrollarse en la superficie de las tierras emergidas por la influencia de la intemperie y de los seres vivos. De un modo simplificado puede decirse que las etapas implicadas en su formación son las siguientes: 

Disgregación mecánica de las rocas. Meteorización química de los materiales regolíticos, liberados. Instalación de los seres vivos (vegetales, microorganismo, etc.) sobre ese substrato inorgánico. Esta es la fase más significativa, ya que con sus procesos vitales y metabólicos, continúan la meteorización de los minerales, iniciada por mecanismos inorgánicos. Además, los restos vegetales y animales a través de la fermentación y la putrefacción enriquecen ese sustrato. Mezcla de todos estos elementos entre sí, y con agua y aire intersticiales. Suelo es el sistema complejo que se forma en la capa más superficial de la Tierra, en la interface o límite entre diversos sistemas que se reúnen en la superficie terrestre: la litosfera, que aporta la matriz mineral del suelo, la atmósfera, la hidrosfera y la biosfera, que alteran dicha matriz, para dar lugar al suelo propiamente dicho. Inicialmente, se da la alteración física y química de las rocas, realizada, fundamentalmente, por la acción geológica del agua y otros agentes geológicos externos, y 

posteriormente por la influencia de los seres vivos, que es fundamental en este proceso de formación. Se desarrolla así una estructura en niveles superpuestos, conocida como el perfil de un suelo, y una composición química y biológica definida. Las características locales de los sistemas implicados — litología y relieve, clima y biota — y sus interacciones dan lugar a los diferentes tipos de suelo. Los procesos de alteración mecánica y meteorización química de las rocas, determinan la formación de un manto de alteración o eluvión que, cuando por la acción de los mecanismos de transporte de laderas, es desplazado de su posición de origen, se denomina coluvión. Sobre los materiales del coluvión, puede desarrollarse lo que comúnmente se conoce como suelo; el suelo es el resultado de la dinámica física, química y biológica de los materiales alterados del coluvión, originándose en su seno una diferenciación vertical en niveles horizontales u horizontes. En estos procesos, los de carácter biológico y bioquímico llegan a adquirir una gran importancia, ya sea por la descomposición de los productos vegetales y su metabolismo, por los microorganismos y los animales zapadores. El conjunto de disciplinas que se abocan al estudio del suelo se engloban en el conjunto denominado Ciencias del Suelo, aunque entre ellas predomina la edafología e incluso se usa el adjetivo edáfico para todo lo relativo al suelo. El estudio del suelo implica el análisis de su mineralogía, su física, su química y su biología. Por este motivo, el suelo no es una entidad estrictamente geológica, por lo que la ciencia que lo estudia, la edafología, esta vinculada a la geología a la biología y a la agronomía.


La composición química se puede dividir en: orgánicos e inorgánicos


inorgánicos : 

Representan las partículas minerales el 50% del total, de las cuales dominan la arena, arcilla y caliza, y en menor medida óxidos e hidróxidos de hierro y sales.

  • ARENA


La arena, cuya importancia ya se ha dicho, procede de la roca por meteorización (efectos externos que alteran las rocas superficiales); la silícica es la más típica, por ello se suele expresar el contenido de arena de los suelos en tanto por ciento de sílice (SiO2).

La arena procede de la meteorización de la roca madre

  • ARCILLAS

Las arcillas proceden de silicatos descompuestos de la roca madre. Son principalmente una mezcla de silicatos de aluminio hidratados, los cuales pueden incorporar además hierro, magnesio y potasio. La más típica es la caolinita (sílice, alúmina y agua).



Las arcillas proceden de silicatos

descompuestos de la roca madre

La presencia dominante de los silicatos de aluminio es la razón de que el contenido en arcilla de los suelos, sea expresado en tantos por ciento de óxido alumínico  o alúmina (A12O3).

  • CALIZA

La caliza o carbonato cálcico (CaCO3), suele presentarse en forma de arenas, limos o unidas a las arcillas margosas. Tienen la capacidad de disolverse en el agua, las cuales arrastran en forma de bicarbonato cálcico; a su vez, los ácidos nítrico y fosfórico originan nitratos y fosfatos cálcicos.


Tierras calizas


Todos estos elementos pueden ser absorbidos por las plantas, aunque un exceso de cal sólo es soportado por las plantas calcícolas. Otra presencia en el suelo útil para las plantas es la dolomía (CaMg (CO3)2), carbonato doble de calcio y magnesio, que sintetiza la clorofila.

  • Óxidos de hierro




Los óxidos e hidróxidos de hierro (oligisto y limonita) se producen como resultado de la meteorización de la mica negra (biotita) y otros silicatos (anfíboles y piroxenas). Estos elementos son los causantes de que las tierras presenten colores rojos y amarillos.

  • Sales


Las sales, tales como nitratos, fosfatos, sulfatos y cloruros proceden de la descomposición de la materia orgánica, o mediante la acción bacteriana que fija el nitrógeno de la atmósfera.
Cierta flora denominada nitró fila es muy frecuente en lugares ricos en nitratos; muchos vegetales obtienen de éstos el nitrógeno con que sintetizan sus proteínas.

orgánicos : 

Suponen el 5%; el 45% que resta lo ocupan aire y agua, los cuales aprovechan la porosidad de la arena (el componente más importante de los suelos) para penetrar en los suelos y permitir la iteración con los demás elementos.

  • Azufre y fósforo


El azufre y fósforo que necesitan los vegetales son recibidos de los fosfatos y sulfatos, aunque sólo ciertas plantas denominadas hipsofilos son capaces de soportar altas concentraciones de azufre, como son los contenidos en los sustratos yesíferos.

Las altas concentraciones de azufre únicamente son
soportadas por determinadas plantas denominadas hipsofilos

  • Cloruros 



Cloruro sódico sobre rocas marinas

Por su parte, los cloruros son compuestos químicos formados por cloro y un metal; uno de los cloruros más comunes es la sal marina. Son en general poco asimilables por los vegetales, una concentración superior a 0,5% ya les resulta perjudicial, aunque existe un tipo de plantas denominadas haló filas o barrileras que no pueden germinar si el suelo no contiene adecuadas cantidades de sal.


Formación de la materia orgánica del suelo

De la descomposición de restos animales y vegetales se genera la materia orgánica del suelo. El resultado final tras el proceso continuo de transformación química o bioquímica de los residuos y sustancias vegetales y animales, es la formación del mantillo o humus.
Contiene sustancias diversas (humina, ácido húmico, etc.) y proporciona al suelo los elementos nitrogenados indispensables para su fertilidad. El humus puede considerarse la base de la fertilidad del suelo, ejerce una influencia favorable sobre su estructura, y actúa como regulador de la nutrición, reteniendo y haciendo asimilable el fósforo y la potasa, y favoreciendo la actividad biológica del suelo.












No hay comentarios.:

Publicar un comentario